
1
San José State University

Department of Mechanical and Aerospace Engineering

Lab 3 – RC Filters and Basic Timer Functionality February 24, 2017

Report Author: Eric Rosenfeld

Lab Team: Eric Rosenfeld

Lab Date: February 24, 2017

Summary

This report details the characteristics of RC filters and the results obtained from

incorporating RC filters into circuits. An input voltage was supplied into the RC filter circuit by

the function generator, then output voltage was measured using the oscilloscope. The capabilities

and applications of the Arduino Microcontroller are further explored in this lab, and now

incorporates using a speaker to become familiar with more inputs and outputs connected to the

header pins on the Arduino. Additionally, the timer function on the function generator was

utilized to create a tone for a duration of time. Version 4.5 of the EduShields YouKnow board

was used for the experiments.

Results/Discussion

Introduction

RC Filter Theory: Low-Pass Filter

 In a given higher order circuit, transfer functions are derived to give the ratio of output

voltage (VOUT) to input voltage (VIN) as well as the order of the circuit. For a low-pass filter, for

example, the transfer function is (Equation 2 from the ME 106 Lab Manual):
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=

1
1 + 𝑗𝜔𝑅𝐶

where: VOUT = Output voltage

 VIN = Input voltage

 j = a complex number √−1

 ω = Frequency of VIN in
𝑟𝑎𝑑

𝑠

 R = Resistor Value

 C = Capacitor Value

Because they are inversely related, as the frequency of the input voltage increases, the value

of the transfer function
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
 decreases.

 The low-pass filter found in the ME 106 manual was constructed on the breadboard for this

exercise. The resistor value was 1.1 kΩ and the capacitor value was 0.1 µF.

2
San José State University

Department of Mechanical and Aerospace Engineering

Figure 1. RC Low-Pass Filter circuit constructed on the breadboard. VOUT is measured across the Capacitor.

 The function generator was set up to output a sine wave at VIN = 5 VP-P for various

frequencies. The amplitude of VIN and VOUT was then measured via the oscilloscope.

Frequency [Hz]

“f”

Frequency [
𝑟𝑎𝑑

𝑠
]

ω = 2πf

VIN [mV] VOUT [mV]

500 Hz 3141.593
𝑟𝑎𝑑

𝑠
 506.3 mV 468.8 mV

1.6 kHz 10053.1
𝑟𝑎𝑑

𝑠
 506.3 mV 343.8 mV

10 kHz 62831.9
𝑟𝑎𝑑

𝑠
 506.3 mV 84.38 mV

 Additionally, the ratio of the output voltage to the input voltage
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
 that were measured via

the oscilloscope were compared with the magnitude of the transfer function from Equation 2

above. Substituting R = 1.1 kΩ and C = 0.1 µF into the transfer function for low-pass filters from

above, the magnitude of the transfer function becomes the following equation:
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=

1

1 + 𝑗𝜔 × (1.1 𝑘Ω) × (0.1 𝜇𝐹)

Each VIN angular frequency in
𝑟𝑎𝑑

𝑠
 is then substituted into the function. Afterwards, the function

is evaluated. Lastly, the magnitude of the real and imaginary part of the function is taken.

3
San José State University

Department of Mechanical and Aerospace Engineering

Frequency [
𝑟𝑎𝑑

𝑠
]

ω = 2πf

Ratio
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
 Magnitude of Transfer Function

‖
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
‖ = √(𝑅𝐸𝐴𝐿)2 + (𝐼𝑀𝐴𝐺𝐼𝑁𝐴𝑅𝑌)2

3141.593
𝑟𝑎𝑑

𝑠
 0.92593 √(0.9988039104)2 + (−0.34563839)2 =

0.9994017763

10053.1
𝑟𝑎𝑑

𝑠
 0.67904 √(0.4498659657)2 + (−0.4974802294)2

= 0.6707204826

62831.9
𝑟𝑎𝑑

𝑠
 0.166660 √(0.0205048471)2 + (−0.1417194353)2

= 0.1431951364

 The percent differences are: 7.63212%, 1.23274%, and 15.1457% respectively. (Question 1)

Although the percent difference corresponding to the 1.6 kHz was at a low 1.23274%, the

other two percent differences are high probably due to the fluctuations in the output

voltage seen on the oscilloscope during lab. The larger the frequencies became, the more

that the output voltage was reduced. This circuit in which the resistor and capacitor are

configured as such (with VOUT being measured across the capacitor) is called a low-pass

filter because lower frequencies are “passed” to the output with little attenuation [cut-off]

and higher frequencies are significantly attenuated (i.e., not “passed”) (Alciatore & Histand,

2011, p. 128).

 The low-pass filter circuit was still in use for the following task: the phase lag of the low-

pass circuit at 1.6 kHz was to be measured on the oscilloscope. The phase lag is the measure of

the amount of time that the output voltage lags behind the input voltage, and it is measured in

degrees (Alciatore & Histand, 2011, p. 129). First, the theoretical value of the phase lag is

calculated for 1.6 kHz, using the Imaginary and Real parts of the Transfer Function:

𝜙 = (
𝐼𝑀𝐴𝐺𝐼𝑁𝐴𝑅𝑌

𝑅𝐸𝐴𝐿
)

 = (
0.4974802294

0.4498659657
) = 47.877°

Next, the observed value of the phase lag is calculated for 1.6 kHz. The procedure listed in the

lab manual was followed in order to align the input voltage waveform and the output voltage

waveform, as shown in the image below.

For VIN, Period [T] = 625 µs

For VOUT, Period [T] = 625 µs

 t1 = 400 µs

 t2 = 484 µs

 Δt = t2 – t1 = 84 µs

𝜙 =
(360) × (𝛥𝑡𝑑)

𝑇

4
San José State University

Department of Mechanical and Aerospace Engineering

where: Φ = Phase lag, or phase angle

 Δtd = time displacement between the input and output signal [sec]

 T = Period of the signals [sec]

 =
(360)×(84 𝜇𝑠)

625 𝜇𝑠
 = 48.384 °

(Alciatore & Histand, 2011, p. 129). (Question 2) One period on the waveform represents

360° (Furman, 2017, p. 3). The theoretical value of 47.877° agrees with the observed value of

48.384°, with a 1.05339% difference. This means that the values for the Transfer Function

are correct, and the time displacement is correct.

Figure 2. The input voltage waveform and the output voltage waveform are depicted after aligning them so

that it would be easier to measure the phase lag.

RC Filter Theory: High-Pass Filter

 As stated earlier, transfer functions are derived to give the ratio of output voltage (VOUT) to

input voltage (VIN) as well as the order of the circuit. Now, the transfer function for a high-pass

filter is (Equation 4 from the ME 106 Lab Manual):
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=

𝑗𝜔𝑅𝐶
1 + 𝑗𝜔𝑅𝐶

where: VOUT = Output voltage

 VIN = Input voltage

 j = a complex number √−1

 ω = Frequency of VIN in
𝑟𝑎𝑑

𝑠

5
San José State University

Department of Mechanical and Aerospace Engineering

 R = Resistor Value

 C = Capacitor Value

 Now, the high-pass filter found in the ME 106 manual was constructed on the breadboard for

this exercise. The capacitor value and the resistor value were once again 0.1 µF and1.1 kΩ,

respectively.

Figure 3. RC High-Pass Filter circuit constructed on the breadboard. Notice that the Resistor and Capacitor

have switched places. Now, VOUT is measured across the Resistor.

 Again, the function generator was set up to output a sine wave at VIN = 5 VP-P for various

frequencies. The amplitude of VIN and VOUT was then measured via the oscilloscope.

Frequency [Hz]

“f”

Frequency [
𝑟𝑎𝑑

𝑠
]

ω = 2πf

VIN [mV] VOUT [mV]

500 Hz 3141.593
𝑟𝑎𝑑

𝑠
 506.3 mV 153.1 mV

1.6 kHz 10053.1
𝑟𝑎𝑑

𝑠
 493.8 mV 340.6 mV

10 kHz 62831.9
𝑟𝑎𝑑

𝑠
 493.8 mV 493.8 mV

 Additionally, the ratio of the output voltage to the input voltage
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
 that were measured via

the oscilloscope were compared with the magnitude of the transfer function from Equation 4

6
San José State University

Department of Mechanical and Aerospace Engineering

above. Substituting C = 0.1 µF and R = 1.1 kΩ into the transfer function for high-pass filters

from above, the magnitude of the transfer function becomes the following equation:
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=

𝑗𝜔 × (1.1 𝑘𝛺) × (0.1 𝜇𝐹)

1 + 𝑗𝜔 × (1.1 𝑘Ω) × (0.1 𝜇𝐹)

Each VIN angular frequency in
𝑟𝑎𝑑

𝑠
 is then substituted into the function. Afterwards, the function

is evaluated. Lastly, the magnitude of the real and imaginary part of the function is taken.

Frequency [
𝑟𝑎𝑑

𝑠
]

ω = 2πf

Ratio
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
 Magnitude of Transfer Function

‖
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁

‖ = √(𝑅𝐸𝐴𝐿)2 + (𝐼𝑀𝐴𝐺𝐼𝑁𝐴𝑅𝑌)2

3141.593
𝑟𝑎𝑑

𝑠
 0.30620 √(0.1066820325)2 + (0.3087085621)2 =

0.3266221553

10053.1
𝑟𝑎𝑑

𝑠
 0.68975 √(0.5501340343)2 + (0.4974802294)2 = 0.7417102091

62831.9
𝑟𝑎𝑑

𝑠
 1.0 √(0.9794951529)2 + (0.1417194353)2 = 0.9896944745

 The percent differences are: 6.45431%, 7.25975%, and 1.03589% respectively. (Question 1)

The percent differences are now reasonably low, meaning the fluctuations in the output

voltage seen on the oscilloscope were less, and the was overall more accuracy. In contrast

with the low-pass filter, in which case the larger the frequencies became the more that the

output voltage was reduced, this time, the lower the frequency the more that the output

voltage was reduced. This circuit in which the capacitor and resistor are configured as such

(with VOUT being measured across the resistor) is called a high-pass filter because higher

frequencies are now “passed” to the output with little attenuation and lower frequencies

are now “not-passed” and are more attenuated [cut-off] (Alciatore & Histand, 2011, p. 128).

The ratio of
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
 for 10 kHz is 1.0, which most likely means that the high-pass filter has

reached its limit – it cannot attenuate any frequencies higher than 10 kHz.

 The oscilloscope was then used to measure the phase lag of the high-pass filter circuit at 1.6

kHz. The same results as with the low-pass filter were obtained. (Question 2) The theoretical

value of the phase lag was 47.877° and the observed value was 48.384°, leading to a percent

difference of 1.05339%. Again, this means that the values for the Transfer Function are

correct, and the time displacement is correct.

 Using the high-pass filter circuit, a DC offset was to be added from the function generator

output. (Question 3) With a +2.00 V DC Offset value for 10 kHz, the peak-to-peak voltage of

VIN was 487.5 mV and the peak-to-peak voltage of VOUT was also 487.5 mV. Adding a DC

offset voltage does not affect the output voltage VOUT of the high-pass filter because the

capacitor blocks the DC component of the signal.

7
San José State University

Department of Mechanical and Aerospace Engineering

Using the Arduino to Output a Frequency

Basic Introduction to IC Timer-Counters

 (Question 4) Using a 16-bit counter (Timer1 on the ATmega328), a chosen prescaler

value of 8, and a standard 16 MHz clock tick, it will take the counter 32768 microseconds

to reach its maximum value.

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

216 = (65536) × (0.5 𝜇𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑡𝑖𝑐𝑘) = 32768 𝜇𝑠

Driving a Speaker with the Function Generator

 An auxiliary speaker was used for this exercise. (Question 5) Using the Digital Multimeter

(DMM), the DC impedance of the auxiliary speaker was measured to be 3.628 Ω. The

function generator was then set up with a 1 V peak-to-peak (VP-P), 0 V offset, sine wave signal.

Also, it was set for a 50 Ω output impedance because the speaker is a low-impedance load. The

function generator was attached to the speaker, and the oscilloscope was attached across the

them. Using the knob on the function generator to increase the frequency, the tone could no

longer be heard at a frequency of 16 kHz (outside of human hearing range).

 Next, the function generator was set up to sweep frequencies from 200-15,000 Hz using the

procedure listed in the lab manual. (Question 6A) After the sweep button on the generator is

pressed, a low police siren sound, a low “whooo”, is emitted from the speaker. The

waveform was then scaled vertically on the scope screen to get a better view of the behavior of

the waveform. To do so, Auto-scale was pressed, and the horizontal scale was changed from 1.00

ms/div to 2.00 ms/div using the horizontal Time/Div knob. (Question 6B) On the oscilloscope,

frequency increased continuously until the sweep reached the end of the range (15,000 Hz),

at which point the waveform began the cycle again. Also, the amplitude of the waveform

spikes near the beginning of the sweep cycle probably because a sudden increase in

frequency causes a sudden increase in voltage. This continues in an endless cycle, and

images of each instance are displayed below.

Figure 4. During the beginning of the sweep cycle, the sinusoidal waveform observed on the oscilloscope

started with a low frequency and low amplitude.

8
San José State University

Department of Mechanical and Aerospace Engineering

Figure 5. Also near the beginning of the sweep cycle, the frequency of the sinusoidal waveform observed on

the oscilloscope increased as it swept across the range. Amplitude also spiked.

Figure 6. Frequency continued to increase until the end of the sweep (15,000 Hz) was reached. Amplitude had

eventually reduced as well.

(Question 6C) The waveform on the function generator was switched from a sine-wave to a

square-wave. The tone then sounded different: a louder, higher-pitched tone that sounded

similar to an evacuation alarm emitted from the speakers. But the same behavior was

observed as with the sinusoidal wave: frequency increased continuously until the sweep

reached the end of the range (15,000 Hz), at which point the waveform began the cycle

again. Also, the amplitude of the waveform spikes near the beginning of the sweep cycle

probably because a sudden increase in frequency causes a sudden increase in voltage. This

continues in an endless cycle, and images of each instance are displayed below.

Because the square wave is not smooth like the sine wave, the input signal will also not be

smooth, so the tone will not be as smooth. This is similar to a capacitor charging and

discharging, which is represented by an exponential graph. The sine wave may be

preferred for maintaining a constant low-sounding noise/tone, while the square wave might

be preferred for applications that require sudden noises, such as a fire or evacuation alarm.

9
San José State University

Department of Mechanical and Aerospace Engineering

Figure 7. During the beginning of the sweep cycle, the square waveform observed on the oscilloscope started

with a low frequency and low amplitude.

Figure 8. Also near the beginning of the sweep cycle, the frequency of the square waveform observed on the

oscilloscope increased as it swept across the range. Amplitude also spiked.

Figure 9. Frequency continued to increase until the end of the sweep (15,000 Hz) was reached. Amplitude had

eventually reduced as well.

10
San José State University

Department of Mechanical and Aerospace Engineering

 Now, instead of using the function generator, the Arduino was used to output audio to a real,

auxiliary speaker. The circuit shown in the lab manual was constructed on the breadboard.

(Question 7) With the 3.628 Ω speaker and a 176.36 Ω resistor connected, the current

limited was calculated using Ohm’s Law and series resistors:

𝑉 = 𝐼 × 𝑅

Where V = 5 V from the USB cable

And R = 3.628 Ω + 176.36 Ω = 179.988Ω

𝐼 =
𝑉

𝑅
=

5 𝑉

179.888 𝛺
= 0.02778 𝐴 = 27.78 𝑚𝐴

 (Question 8) Now, an Arduino program was made using the Arduino IDE that

generated a sweep tone from a minimum of 100 Hz to a maximum of 15,000 Hz in 5

seconds. Refer to Appendix A for the pitches.h source code and to Appendix B for the

sketch pertaining to this exercise.

 (Question 9) Now, the Arduino program was modified to time the sweep sequences and

print the result on the Serial Monitor. Refer to Appendix C for the sketch pertaining to this

exercise.

 (Question 10) The breadboard was put aside for the last exercise. The function

generator was set up to produce an input square wave with 5 VP-P amplitude, 2.5 V offset,

50% duty cycle, Hi-Z termination, for any frequency between 1 kHz and 5 kHz. The

frequency chosen was 10 kHz, and the generator was connected to digital pin 11 on the

Arduino. An Arduino sketch was created that used the pulseIn() function to time the

length of the high portion of the signal pulses from the function generator and printed it

out on the Serial Monitor. Refer to Appendix D for the sketch pertaining to this exercise.

11
San José State University

Department of Mechanical and Aerospace Engineering

Figure 10. Serial Monitor displayed the duration of the high portions of the signal pulses from the function

generator.

Conclusions and Recommendations

Lab 3 demonstrated the characteristics and uses of RC filters: low-pass and high-pass filters

in a circuit. For low-pass filters, the higher the frequency became, the more that the output

voltage was reduced. Low-pass filters only “pass” lower frequencies to the output with little

attenuation [cut-off] and higher frequencies are significantly attenuated (i.e., not “passed”). The

opposite is true for high-pass filters: the lower frequencies resulted in reduced output voltage.

Higher frequencies are now “passed” to the output with little attenuation and lower frequencies

are now “not-passed” and are more attenuated [cut-off]. Additionally, using the function

generator as an input signal for the Arduino’s Digital pin 11 created a tone for the speaker. The

sweep button on the generator will be useful when a range of frequencies is to be swept across.

For the future, it may be useful to use a RC filter to filter out high frequencies or low

frequencies, respectively, depending on the situation. Additionally, using the technique covered

in Question 10 may become useful because some sensors may not report their measurements as

analog or digital values, and instead as pulse lengths and duty cycles.

12
San José State University

Department of Mechanical and Aerospace Engineering

References

Furman, B. (2014). ME 106 Lab Manual. San Jose, CA: San Jose State University.

Alciatore, D. G. & Histand, M. B. (2011). Introduction to Mechatronics and Measurement

Systems (4th Ed.). New York, NY: McGraw-Hill.

13
San José State University

Department of Mechanical and Aerospace Engineering

Appendix A: Pitches.h Source Code

/***

 * Public Constants

 ***/

#define NOTE_B0 31

#define NOTE_C1 33

#define NOTE_CS1 35

#define NOTE_D1 37

#define NOTE_DS1 39

#define NOTE_E1 41

#define NOTE_F1 44

#define NOTE_FS1 46

#define NOTE_G1 49

#define NOTE_GS1 52

#define NOTE_A1 55

#define NOTE_AS1 58

#define NOTE_B1 62

#define NOTE_C2 65

#define NOTE_CS2 69

#define NOTE_D2 73

#define NOTE_DS2 78

#define NOTE_E2 82

#define NOTE_F2 87

#define NOTE_FS2 93

#define NOTE_G2 98

#define NOTE_GS2 104

#define NOTE_A2 110

#define NOTE_AS2 117

#define NOTE_B2 123

#define NOTE_C3 131

#define NOTE_CS3 139

#define NOTE_D3 147

#define NOTE_DS3 156

#define NOTE_E3 165

#define NOTE_F3 175

#define NOTE_FS3 185

#define NOTE_G3 196

#define NOTE_GS3 208

#define NOTE_A3 220

#define NOTE_AS3 233

#define NOTE_B3 247

#define NOTE_C4 262

#define NOTE_CS4 277

#define NOTE_D4 294

#define NOTE_DS4 311

#define NOTE_E4 330

#define NOTE_F4 349

#define NOTE_FS4 370

#define NOTE_G4 392

#define NOTE_GS4 415

#define NOTE_A4 440

#define NOTE_AS4 466

#define NOTE_B4 494

#define NOTE_C5 523

14
San José State University

Department of Mechanical and Aerospace Engineering

#define NOTE_CS5 554

#define NOTE_D5 587

#define NOTE_DS5 622

#define NOTE_E5 659

#define NOTE_F5 698

#define NOTE_FS5 740

#define NOTE_G5 784

#define NOTE_GS5 831

#define NOTE_A5 880

#define NOTE_AS5 932

#define NOTE_B5 988

#define NOTE_C6 1047

#define NOTE_CS6 1109

#define NOTE_D6 1175

#define NOTE_DS6 1245

#define NOTE_E6 1319

#define NOTE_F6 1397

#define NOTE_FS6 1480

#define NOTE_G6 1568

#define NOTE_GS6 1661

#define NOTE_A6 1760

#define NOTE_AS6 1865

#define NOTE_B6 1976

#define NOTE_C7 2093

#define NOTE_CS7 2217

#define NOTE_D7 2349

#define NOTE_DS7 2489

#define NOTE_E7 2637

#define NOTE_F7 2794

#define NOTE_FS7 2960

#define NOTE_G7 3136

#define NOTE_GS7 3322

#define NOTE_A7 3520

#define NOTE_AS7 3729

#define NOTE_B7 3951

#define NOTE_C8 4186

#define NOTE_CS8 4435

#define NOTE_D8 4699

#define NOTE_DS8 4978

15
San José State University

Department of Mechanical and Aerospace Engineering

Appendix B: Source Code for Question 8

/*

 * Hello. This program was developed by Patrick Barrera and Jimmy He for a

laboratory project in one of

 * the upper division college courses at San Jose State University:

Mechanical Engineering 106:

 * Fundamentals of Mechatronics. This is Lab 3 "RC Filters and Basic Timer

Functionality", Question 8.

 * The program generates a sweep tone on the speaker from a minimum of 100

Hz to a maximum of 15,000 Hz

 * in 5 seconds.

 */

#include "pitches.h"

// I) Variables

/* Pin Assignments: Declare and Initialize Input, Output, and Variables

 */

int hertz = 100;

// II) setup() is analogous to Constructors

/* Configure Pins. Set up Input and Output with the setup() function.

 * pinMode(12, INPUT); function initializes pin 12 (Button0) to INPUT

 * pinMode(SPEAKER, OUTPUT); function initializes the SPEAKER (pin 5) to

OUTPUT

 * pinMode(SW0, INPUT_PULLUP); function initializes switch 0 (pin 12) to

INPUT_PULLUP.

 * INPUT_PULLUP initializes switch 0 to default at 0 Volts.

 * MyServo.attach(10); Attaches the servo on pin 10 to the servo object

 */

void setup()

{

 pinMode(11, OUTPUT);

}

// III) loop() is analogous to main()

/* Loop Forever

 */

void loop()

{

 for(hertz = 10; hertz <= 15000; hertz+=50)

 {

 //int noteDuration = 1000 / noteDurations[hertz];

 tone(11, hertz);

 //digitalWrite(11, HIGH);

 delay(15);

 }

16
San José State University

Department of Mechanical and Aerospace Engineering

 delay(15);

 for(hertz = 15000; hertz >= 10; hertz-=50)

 {

 tone(11, hertz);

 //digitalWrite(11, HIGH);

 delay(15);

 }

 digitalWrite(11, LOW);

}

17
San José State University

Department of Mechanical and Aerospace Engineering

Appendix C: Source Code for Question 9

/*

 * Hello. This program was developed by Patrick Barrera and Jimmy He for a

laboratory project in one of

 * the upper division college courses at San Jose State University:

Mechanical Engineering 106:

 * Fundamentals of Mechatronics. This is Lab 3 "RC Filters and Basic Timer

Functionality", Question 9.

 * The program generates a sweep tone on the speaker from a minimum of 100

Hz to a maximum of 15,000 Hz

 * in 5 seconds, times the sweep sequence, and prints it to the Serial

Monitor.

 */

#include "pitches.h"

// I) Variables

/* Pin Assignments: Declare and Initialize Input, Output, and Variables

 */

int hertz = 100;

unsigned long time;

// II) setup() is analogous to Constructors

/* Configure Pins. Set up Input and Output with the setup() function.

 * pinMode(12, INPUT); function initializes pin 12 (Button0) to INPUT

 * pinMode(SPEAKER, OUTPUT); function initializes the SPEAKER (pin 5) to

OUTPUT

 * pinMode(SW0, INPUT_PULLUP); function initializes switch 0 (pin 12) to

INPUT_PULLUP.

 * INPUT_PULLUP initializes switch 0 to default at 0 Volts.

 * MyServo.attach(10); Attaches the servo on pin 10 to the servo object

 */

void setup()

{

 pinMode(11, OUTPUT);

 // initialize serial communication at 9600 bits per second:

 Serial.begin(9600);

}

// III) loop() is analogous to main()

/* Loop Forever

 */

void loop()

{

 time = millis();

 for(hertz = 10; hertz <= 15000; hertz+=50)

18
San José State University

Department of Mechanical and Aerospace Engineering

 {

 //int noteDuration = 1000 / noteDurations[hertz];

 tone(11, hertz);

 //digitalWrite(11, HIGH);

 Serial.println(time);

 delay(15);

 }

 delay(15);

 time = 0;

 for(hertz = 15000; hertz >= 10; hertz-=50)

 {

 tone(11, hertz);

 //digitalWrite(11, HIGH);

 delay(15);

 }

 digitalWrite(11, LOW);

}

19
San José State University

Department of Mechanical and Aerospace Engineering

Appendix D: Source Code for Question 10

/*

 * Hello. This program was developed by Patrick Barrera and Jimmy He for a

laboratory project in one of

 * the upper division college courses at San Jose State University:

Mechanical Engineering 106:

 * Fundamentals of Mechatronics. This is Lab 3 "RC Filters and Basic Timer

Functionality", Question 10.

 * This program uses the pulseIn() function to time the length of the high

portion of the signal pulses

 * from the function generator and prints it out on the Serial Monitor. The

Arduino takes in an input

 * signal from the function generator via Digital pin 11 (and ground) on the

Arduino.

 */

#include "pitches.h"

// I) Variables

/* Pin Assignments: Declare and Initialize Input, Output, and Variables

 */

int hertz = 100;

unsigned long duration;

// II) setup() is analogous to Constructors

/* Configure Pins. Set up Input and Output with the setup() function.

 * pinMode(12, INPUT); function initializes pin 12 (Button0) to INPUT

 * pinMode(SPEAKER, OUTPUT); function initializes the SPEAKER (pin 5) to

OUTPUT

 * pinMode(SW0, INPUT_PULLUP); function initializes switch 0 (pin 12) to

INPUT_PULLUP.

 * INPUT_PULLUP initializes switch 0 to default at 0 Volts.

 * MyServo.attach(10); Attaches the servo on pin 10 to the servo object

 */

void setup()

{

 // take in input signal from function generator

 pinMode(11, INPUT);

 // initialize serial communication at 9600 bits per second:

 Serial.begin(9600);

}

// III) loop() is analogous to main()

/* Loop Forever

 */

20
San José State University

Department of Mechanical and Aerospace Engineering

void loop()

{

 duration = pulseIn(11, HIGH);

 Serial.println(duration);

}

